Worksheet for 2020-03-04

Conceptual questions

Question 1. Is it possible for different level curves of a function f(x, y) to intersect?

Question 2. How are the direction and magnitude of the gradient vector related to level curves?

Computations

Problem 1. Find all points on the surface

$$x^{2} + y^{2} + 4z^{2} - 2xz - 2yz - 2x + 2z = 1$$

which have a horizontal tangent plane.

Problem 2. Consider the equation $yz + x \ln y + z^3 = 0$.

- (a) If (x, y) = (3, 1), what value of *z* satisfies the equation?
- (b) Near the point (3, 1, a) (where *a* is your answer to the preceding part), the equation implicitly defines *z* as a function of *x* and *y*: *z* = *f*(*x*, *y*). Compute $\nabla f(3, 1)$.

Problem 3.

- (a) Suppose that $\mathbf{r}(t) = (x(t), y(t))$ is parametrized by arclength (recall that this means $|\mathbf{r}'(t)| = 1$; the particle is "moving at speed 1"). Show that the directional derivative of f in the direction of $\mathbf{r}'(t)$ is equal to $\frac{d}{dt}(f(\mathbf{r}(t)))$. Hint: Use the chain rule.
- (b) Consider the function

$$f(x, y) = \cos^{-1}\left(\frac{x^2 - y^2}{x^2 + y^2}\right).$$

Using the preceding part, compute $f_y(1, 0)$. Hint: Use the unit circle.

Question 3. If $\mathbf{r}(t)$ is a curve contained in the surface f(x, y, z) = 0, what is the angle between $\mathbf{r}'(t)$ and $\nabla f(\mathbf{r}(t))$?

Question 4. Fix a function f(x, y), a number c, and a point (a, b) where $\nabla f(a, b) \neq \mathbf{0}$. How many unit vectors **u** are such that $D_{\mathbf{u}}f(a, b) = c$? Hint: The answer depends on |c|.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. No, at a point (a, b) it is not possible for f(a, b) to equal two different values simultaneously.

Question 2. At a point (a, b), the gradient vector $\nabla f(a, b)$ is perpendicular to the level set of f passing through (a, b). The magnitude of the gradient vector is inversely proportional to the spacing between level sets.

Question 3. $\pi/2$; they are orthogonal.

Question 4. If $|c| > |\nabla f(a, b)|$ then none. If $|c| = |\nabla f(a, b)|$ then one. If $|c| < |\nabla f(a, b)|$ then two.

Answers to computations

Problem 1. The tangent plane is horizontal when the gradient has the form (0, 0, ?). That is, we should find the points on the surface where $F_x = F_y = 0$. This system of equations results in the solutions (x, y, z) = (2, 1, 1), (0, -1, -1).

Problem 2.

- (a) z = 0
- (b) Use the Implicit Function Theorem to compute ∂z/∂x and ∂z/∂y, which are the components of ∇f. The final answer is (0, -3).

Problem 3.

(a) The directional derivative in the direction of $\mathbf{r}'(t)$ is

$$\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \frac{\partial f}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial f}{\partial y} \frac{\mathrm{d}y}{\mathrm{d}t}$$
$$= \frac{\mathrm{d}}{\mathrm{d}t} f(\mathbf{r}(t))$$

where in the last step the chain rule was used.

(b) Use $\mathbf{r}(t) = \langle \cos t, \sin t \rangle$, which is parametrized by arclength and has $\mathbf{r}'(0) = \langle 0, 1 \rangle$. So by the preceding part,

$$f_{y}(1,0) = D_{(0,1)}f(x,y)$$
$$= \left(\frac{d}{dt}f(\mathbf{r}(t))\right)\Big|_{t=0}$$
$$= \left(\frac{d}{dt}(2t)\right)\Big|_{t=0}$$
$$= 2.$$