Worksheet for 2020-03-04

Conceptual questions

Question 1. Is it possible for different level curves of a func- Question 3. If $\mathbf{r}(t)$ is a curve contained in the surface tion $f(x, y)$ to intersect? $f(x, y, z)=0$, what is the angle between $\mathbf{r}^{\prime}(t)$ and $\nabla f(\mathbf{r}(t))$? Question 4. Fix a function $f(x, y)$, a number c, and a point Question 2. How are the direction and magnitude of the gradient vector related to level curves?
(a, b) where $\nabla f(a, b) \neq \mathbf{0}$. How many unit vectors \mathbf{u} are such that $D_{\mathbf{u}} f(a, b)=c$? Hint: The answer depends on $|c|$.

Computations

Problem 1. Find all points on the surface

$$
x^{2}+y^{2}+4 z^{2}-2 x z-2 y z-2 x+2 z=1
$$

which have a horizontal tangent plane.
Problem 2. Consider the equation $y z+x \ln y+z^{3}=0$.
(a) If $(x, y)=(3,1)$, what value of z satisfies the equation?
(b) Near the point $(3,1, a)$ (where a is your answer to the preceding part), the equation implicitly defines z as a function of x and $y: z=f(x, y)$. Compute $\nabla f(3,1)$.

Problem 3.

(a) Suppose that $\mathbf{r}(t)=(x(t), y(t))$ is parametrized by arclength (recall that this means $\left|\mathbf{r}^{\prime}(t)\right|=1$; the particle is "moving at speed $\mathrm{l}^{\prime \prime}$). Show that the directional derivative of f in the direction of $\mathbf{r}^{\prime}(t)$ is equal to $\frac{\mathrm{d}}{\mathrm{d} t}(f(\mathbf{r}(t)))$. Hint: Use the chain rule.
(b) Consider the function

$$
f(x, y)=\cos ^{-1}\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) .
$$

Using the preceding part, compute $f_{y}(1,0)$. Hint: Use the unit circle.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to conceptual questions

Question 1. No, at a point (a, b) it is not possible for $f(a, b)$ to equal two different values simultaneously.
Question 2. At a point (a, b), the gradient vector $\nabla f(a, b)$ is perpendicular to the level set of f passing through (a, b). The magnitude of the gradient vector is inversely proportional to the spacing between level sets.

Question 3. $\pi / 2$; they are orthogonal.
Question 4. If $|c|>|\nabla f(a, b)|$ then none. If $|c|=|\nabla f(a, b)|$ then one. If $|c|<|\nabla f(a, b)|$ then two.

Answers to computations

Problem 1. The tangent plane is horizontal when the gradient has the form $\langle 0,0, ?\rangle$. That is, we should find the points on the surface where $F_{x}=F_{y}=0$. This system of equations results in the solutions $(x, y, z)=(2,1,1),(0,-1,-1)$.

Problem 2.

(a) $z=0$
(b) Use the Implicit Function Theorem to compute $\partial z / \partial x$ and $\partial z / \partial y$, which are the components of ∇f. The final answer is $\langle 0,-3\rangle$.

Problem 3.

(a) The directional derivative in the direction of $\mathbf{r}^{\prime}(t)$ is

$$
\begin{aligned}
\nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) & =\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
& =\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t))
\end{aligned}
$$

where in the last step the chain rule was used.
(b) Use $\mathbf{r}(t)=\langle\cos t, \sin t\rangle$, which is parametrized by arclength and has $\mathbf{r}^{\prime}(0)=\langle 0,1\rangle$. So by the preceding part,

$$
\begin{aligned}
f_{y}(1,0) & =D_{\langle 0,1\rangle} f(x, y) \\
& =\left.\left(\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{r}(t))\right)\right|_{t=0} \\
& =\left.\left(\frac{\mathrm{d}}{\mathrm{~d} t}(2 t)\right)\right|_{t=0} \\
& =2
\end{aligned}
$$

